ArgoCD Cloud Provider Comparison Guide
Detailed comparison of ArgoCD setup and features across major cloud providers
ArgoCD Cloud Provider Comparison Guide
This guide compares ArgoCD setup and features across major cloud providers, helping you choose the best platform for your needs.
Video Tutorial
Learn more about comparing ArgoCD across cloud providers in this comprehensive video tutorial:
Feature Comparison Matrix
Feature | AWS (EKS) | GCP (GKE) | Azure (AKS) |
---|---|---|---|
Managed Kubernetes | EKS | GKE | AKS |
Identity Management | IAM/IRSA | Workload Identity | Azure AD |
Load Balancer | ALB/NLB | Cloud Load Balancer | Application Gateway |
Secret Management | Secrets Manager | Secret Manager | Key Vault |
Storage | S3 | GCS | Blob Storage |
Monitoring | CloudWatch | Cloud Operations | Azure Monitor |
Auto Scaling | Cluster Autoscaler | Node Pool Autoscaler | KEDA |
Network Policy | Calico/AWS CNI | GKE Network Policy | Azure CNI |
Cost | Pay per cluster + node | Free control plane | Free control plane |
Setup Complexity | Medium | Low | Medium |
Detailed Comparison
1. Cluster Management
AWS EKS
# EKS Cluster
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
name: argocd-cluster
region: us-west-2
nodeGroups:
- name: ng-1
instanceType: m5.large
desiredCapacity: 3
Pros:
- Deep integration with AWS services
- Advanced security features
- Extensive IAM capabilities
Cons:
- Higher cost (pay for control plane)
- More complex setup
- Steeper learning curve
GCP GKE
# GKE Cluster
apiVersion: container.cnrm.cloud.google.com/v1beta1
kind: ContainerCluster
metadata:
name: argocd-cluster
spec:
location: us-central1
initialNodeCount: 3
workloadIdentityConfig:
workloadPool: PROJECT_ID.svc.id.goog
Pros:
- Free control plane
- Simple setup
- Built-in Workload Identity
- Auto-upgrade and repair
Cons:
- Limited customization
- Tied to GCP ecosystem
- Less flexible networking
Azure AKS
# AKS Cluster
apiVersion: apps/v1
kind: Deployment
metadata:
name: argocd-server
spec:
template:
spec:
serviceAccountName: argocd-server
nodeSelector:
agentpool: system
Pros:
- Free control plane
- Strong Azure AD integration
- Good Windows container support
Cons:
- Network complexity
- Limited node customization
- Azure-specific features
2. Identity Management Comparison
AWS IRSA
# IAM Role for Service Account
apiVersion: v1
kind: ServiceAccount
metadata:
annotations:
eks.amazonaws.com/role-arn: arn:aws:iam::ACCOUNT_ID:role/argocd-role
GCP Workload Identity
# Workload Identity
apiVersion: v1
kind: ServiceAccount
metadata:
annotations:
iam.gke.io/gcp-service-account: argocd@PROJECT_ID.iam.gserviceaccount.com
Azure AD Integration
# Azure AD Pod Identity
apiVersion: aadpodidentity.k8s.io/v1
kind: AzureIdentity
metadata:
name: argocd-identity
spec:
type: 0
resourceID: /subscriptions/SUB_ID/...
clientID: CLIENT_ID
3. Load Balancer Comparison
AWS ALB
# ALB Ingress
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress.kubernetes.io/target-type: ip
GCP Load Balancer
# GCP Load Balancer
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
kubernetes.io/ingress.class: "gce"
Azure Application Gateway
# Application Gateway
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
kubernetes.io/ingress.class: azure/application-gateway
Cost Comparison
1. Infrastructure Costs
Component | AWS | GCP | Azure |
---|---|---|---|
Control Plane | $0.10/hour | Free | Free |
Node Pools | Per instance | Per instance | Per instance |
Load Balancer | $0.025/hour + data | $0.025/hour + data | $0.025/hour + data |
Storage | $0.023/GB | $0.020/GB | $0.0184/GB |
2. Cost Optimization Strategies
AWS
# Spot Instances
nodeGroups:
- name: spot-1
instanceTypes: ["m5.large", "m5a.large"]
spot: true
GCP
# Preemptible VMs
nodeConfig:
preemptible: true
machineType: e2-standard-2
Azure
# Spot VMs
nodeSelector:
"kubernetes.azure.com/scalesetpriority": spot
Performance Comparison
1. Autoscaling Capabilities
AWS
- Horizontal Pod Autoscaling
- Cluster Autoscaler
- Karpenter support
GCP
- Horizontal Pod Autoscaling
- Node Auto-provisioning
- Vertical Pod Autoscaling
Azure
- Horizontal Pod Autoscaling
- Cluster Autoscaler
- KEDA support
2. Networking Performance
Feature | AWS | GCP | Azure |
---|---|---|---|
CNI Performance | High | Very High | High |
Load Balancer Latency | Low | Very Low | Low |
Cross-zone Traffic | Paid | Free | Free within region |
Security Features
1. Network Policies
AWS
# Calico Network Policy
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: argocd-network-policy
spec:
podSelector:
matchLabels:
app: argocd
GCP
# GKE Network Policy
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: argocd-network-policy
spec:
policyTypes:
- Ingress
- Egress
Azure
# Azure Network Policy
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: argocd-network-policy
spec:
podSelector:
matchLabels:
app: argocd
Migration Considerations
1. From AWS to GCP
- Identity management changes
- Storage migration
- Load balancer reconfiguration
- Secret management transition
2. From GCP to Azure
- Workload identity to Azure AD
- GCS to Blob storage
- Network policy adjustments
- Monitoring system changes
3. From Azure to AWS
- Azure AD to IAM
- Blob to S3
- Application Gateway to ALB
- Key Vault to Secrets Manager
Recommendations
1. Choose AWS if:
- Already heavily invested in AWS
- Need advanced IAM capabilities
- Require complex networking
- Want maximum control
2. Choose GCP if:
- Want simplest setup
- Need free control plane
- Prefer managed services
- Want automatic node upgrades
3. Choose Azure if:
- Use Azure AD extensively
- Need Windows container support
- Want strong hybrid cloud
- Use Azure DevOps
Best Practices Across Clouds
-
Identity Management
- Use cloud-native identity solutions
- Implement least privilege
- Regular credential rotation
-
Networking
- Implement network policies
- Use private clusters
- Configure proper ingress
-
Security
- Enable encryption at rest
- Use secret management
- Regular security audits
-
Monitoring
- Use native monitoring tools
- Set up proper alerts
- Monitor costs
Conclusion
Each cloud provider has its strengths and ideal use cases:
- AWS: Enterprise, complex requirements
- GCP: Simplicity, cost-effectiveness
- Azure: Microsoft ecosystem, hybrid deployments
Choose based on:
- Existing infrastructure
- Team expertise
- Budget constraints
- Specific requirements