Managing Azure Batch with Terraform
Learn how to deploy and manage Azure Batch services using Terraform
Managing Azure Batch with Terraform
Azure Batch helps you run large-scale parallel and high-performance computing (HPC) applications efficiently in the cloud. In this guide, we’ll explore how to manage Azure Batch using Terraform.
Prerequisites
- Azure subscription
- Terraform installed
- Azure CLI installed
Basic Configuration
Here’s a basic example of setting up an Azure Batch account:
resource "azurerm_resource_group" "batch_rg" {
name = "batch-resources"
location = "eastus"
}
resource "azurerm_storage_account" "batch_storage" {
name = "batchstorage"
resource_group_name = azurerm_resource_group.batch_rg.name
location = azurerm_resource_group.batch_rg.location
account_tier = "Standard"
account_replication_type = "LRS"
}
resource "azurerm_batch_account" "batch_account" {
name = "batchaccount"
resource_group_name = azurerm_resource_group.batch_rg.name
location = azurerm_resource_group.batch_rg.location
storage_account_id = azurerm_storage_account.batch_storage.id
pool_allocation_mode = "BatchService"
}
resource "azurerm_batch_pool" "batch_pool" {
name = "batchpool"
resource_group_name = azurerm_resource_group.batch_rg.name
account_name = azurerm_batch_account.batch_account.name
display_name = "Batch Pool"
vm_size = "Standard_D2s_v3"
node_agent_sku_id = "batch.node.ubuntu 20.04"
fixed_scale {
target_dedicated_nodes = 2
}
storage_image_reference {
publisher = "Canonical"
offer = "UbuntuServer"
sku = "20.04-LTS"
version = "latest"
}
}
Advanced Features
Auto-scaling
Configure auto-scaling for your Batch pool:
resource "azurerm_batch_pool" "batch_pool" {
# ... other configurations ...
auto_scale {
evaluation_interval = "PT15M"
formula = <<EOF
startingNumberOfVMs = 1;
maxNumberofVMs = 25;
pendingTaskSamplePercent = $PendingTasks.GetSamplePercent(180 * TimeInterval_Second);
pendingTaskSamples = pendingTaskSamplePercent < 70 ? startingNumberOfVMs : avg($PendingTasks.GetSample(180 * TimeInterval_Second));
$TargetDedicatedNodes=min(maxNumberofVMs, pendingTaskSamples);
EOF
}
}
Container Support
Enable container support in your Batch pool:
resource "azurerm_batch_pool" "batch_pool" {
# ... other configurations ...
container_configuration {
type = "DockerCompatible"
container_registries {
registry_server = "myregistry.azurecr.io"
user_name = "username"
password = "password"
}
}
}
Best Practices
- Always use auto-scaling to optimize costs
- Implement proper monitoring and logging
- Use managed identities for enhanced security
- Regularly update node agent and VM images
- Implement proper error handling and retry logic
Security Considerations
- Use Azure Key Vault to store sensitive information
- Implement network security groups
- Use managed identities instead of service principals
- Enable Azure Monitor for monitoring and alerting
- Regularly audit access and permissions
Monitoring and Logging
Configure monitoring for your Batch account:
resource "azurerm_monitor_diagnostic_setting" "batch_diagnostics" {
name = "batch-diagnostics"
target_resource_id = azurerm_batch_account.batch_account.id
log_analytics_workspace_id = azurerm_log_analytics_workspace.workspace.id
log {
category = "ServiceLog"
enabled = true
}
metric {
category = "AllMetrics"
enabled = true
}
}
Conclusion
Azure Batch with Terraform provides a powerful way to manage large-scale computing workloads. By following these best practices and configurations, you can create efficient and secure batch processing environments.