Kubernetes Performance Best Practices
Optimize your Kubernetes clusters for maximum performance and efficiency
Kubernetes Performance Best Practices
Optimizing Kubernetes cluster performance is essential for running efficient and cost-effective workloads. This guide covers key performance optimization strategies and best practices.
Prerequisites
- Basic understanding of Kubernetes
- Access to a Kubernetes cluster
- kubectl CLI tool installed
- Familiarity with monitoring tools
Project Structure
.
├── performance/
│ ├── resource-configs/ # Resource configuration templates
│ ├── hpa/ # Horizontal Pod Autoscaling configs
│ ├── monitoring/ # Monitoring configurations
│ └── benchmarks/ # Performance test configurations
└── optimization/
├── node-configs/ # Node optimization settings
└── network/ # Network optimization configs
Resource Management
1. Resource Requests and Limits
Always specify resource requests and limits:
apiVersion: v1
kind: Pod
metadata:
name: resource-optimized-pod
spec:
containers:
- name: app
image: nginx
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
2. Horizontal Pod Autoscaling
Implement HPA for automatic scaling:
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: app-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: app
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 80
Node Optimization
1. Node Affinity
Use node affinity for optimal pod placement:
apiVersion: v1
kind: Pod
metadata:
name: node-affinity-pod
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/e2e-az-name
operator: In
values:
- e2e-az1
- e2e-az2
2. Pod Anti-Affinity
Spread pods across nodes:
apiVersion: v1
kind: Pod
metadata:
name: anti-affinity-pod
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- web-server
topologyKey: "kubernetes.io/hostname"
Storage Optimization
1. Storage Class Configuration
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: fast
provisioner: kubernetes.io/aws-ebs
parameters:
type: gp3
iopsPerGB: "10"
encrypted: "true"
2. Volume Management
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: optimized-pvc
spec:
storageClassName: fast
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
Network Optimization
1. Network Policies
Optimize network traffic:
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: optimized-network-policy
spec:
podSelector:
matchLabels:
app: web
policyTypes:
- Ingress
- Egress
ingress:
- from:
- podSelector:
matchLabels:
app: api
ports:
- protocol: TCP
port: 80
2. Service Mesh Configuration
Using Istio for network optimization:
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: optimized-routing
spec:
hosts:
- web-service
http:
- route:
- destination:
host: web-service
subset: v1
weight: 90
- destination:
host: web-service
subset: v2
weight: 10
Monitoring and Metrics
1. Prometheus Configuration
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: app-monitor
spec:
selector:
matchLabels:
app: web
endpoints:
- port: web
2. Custom Metrics
apiVersion: custom.metrics.k8s.io/v1beta1
kind: MetricDefinition
metadata:
name: custom-metric
spec:
query: rate(http_requests_total[5m])
Performance Checklist
- Resource Requests and Limits
- Horizontal Pod Autoscaling
- Node Affinity Rules
- Storage Optimization
- Network Policy Configuration
- Service Mesh Implementation
- Monitoring Setup
- Custom Metrics Configuration
- Regular Performance Testing
- Capacity Planning
Common Performance Pitfalls
- Missing resource limits
- Improper pod scheduling
- Inefficient storage configuration
- Network bottlenecks
- Inadequate monitoring
Best Practices for Different Workloads
Stateless Applications
- Use HPA
- Implement pod disruption budgets
- Configure readiness probes
Stateful Applications
- Use local storage when possible
- Implement proper backup strategies
- Configure pod anti-affinity
Batch Jobs
- Set appropriate deadlines
- Use job parallelism
- Implement proper retry mechanisms
Conclusion
Following these performance best practices will help ensure your Kubernetes clusters run efficiently and reliably. Regular monitoring and optimization are key to maintaining high performance.