Kubernetes Scalability Best Practices
Learn how to build and maintain scalable Kubernetes clusters
Kubernetes Scalability Best Practices
Building scalable Kubernetes clusters requires careful planning and implementation of best practices. This guide covers essential strategies for achieving optimal scalability.
Prerequisites
- Basic understanding of Kubernetes
- Access to a Kubernetes cluster
- kubectl CLI tool installed
- Familiarity with scaling concepts
Project Structure
.
├── scaling/
│ ├── cluster-autoscaler/ # Cluster autoscaling configs
│ ├── hpa/ # Horizontal Pod Autoscaling
│ ├── vpa/ # Vertical Pod Autoscaling
│ └── metrics/ # Custom metrics configurations
└── infrastructure/
├── node-pools/ # Node pool configurations
└── networking/ # Network scaling configs
Cluster Autoscaling
1. Cluster Autoscaler Configuration
apiVersion: autoscaling.k8s.io/v1
kind: ClusterAutoscaler
metadata:
name: cluster-autoscaler
spec:
scaleDown:
enabled: true
delayAfterAdd: 10m
delayAfterDelete: 10s
delayAfterFailure: 3m
scaleUp:
enabled: true
maxNodeProvisionTime: 15m
2. Node Pool Configuration
apiVersion: v1
kind: NodePool
metadata:
name: scalable-pool
spec:
minSize: 3
maxSize: 10
machineType: n1-standard-2
autoscaling:
enabled: true
Application Scaling
1. Horizontal Pod Autoscaling
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: app-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: app
minReplicas: 3
maxReplicas: 100
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 75
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 75
2. Vertical Pod Autoscaling
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
name: app-vpa
spec:
targetRef:
apiVersion: "apps/v1"
kind: Deployment
name: app
updatePolicy:
updateMode: "Auto"
Load Testing and Monitoring
1. Load Test Configuration
apiVersion: batch/v1
kind: Job
metadata:
name: load-test
spec:
template:
spec:
containers:
- name: k6
image: loadimpact/k6
command: ['k6', 'run', 'test.js']
volumeMounts:
- name: test-config
mountPath: /test
volumes:
- name: test-config
configMap:
name: load-test-config
2. Monitoring Configuration
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: scaling-monitor
spec:
selector:
matchLabels:
app: scaling-metrics
endpoints:
- port: metrics
Resource Management
1. Resource Quotas
apiVersion: v1
kind: ResourceQuota
metadata:
name: compute-resources
spec:
hard:
requests.cpu: "20"
requests.memory: 100Gi
limits.cpu: "40"
limits.memory: 200Gi
2. Limit Ranges
apiVersion: v1
kind: LimitRange
metadata:
name: resource-constraints
spec:
limits:
- default:
memory: 512Mi
cpu: 500m
defaultRequest:
memory: 256Mi
cpu: 200m
type: Container
Network Scaling
1. Service Mesh Configuration
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
name: circuit-breaker
spec:
host: myservice
trafficPolicy:
connectionPool:
tcp:
maxConnections: 100
http:
http1MaxPendingRequests: 1
maxRequestsPerConnection: 1
outlierDetection:
consecutiveErrors: 5
interval: 30s
baseEjectionTime: 30s
Scalability Checklist
- ✅ Cluster Autoscaling
- ✅ Horizontal Pod Autoscaling
- ✅ Vertical Pod Autoscaling
- ✅ Resource Quotas
- ✅ Load Testing
- ✅ Monitoring
- ✅ Network Scaling
- ✅ Service Mesh
- ✅ Resource Management
- ✅ Performance Testing
Best Practices by Workload Type
Microservices
- Implement service mesh
- Use circuit breakers
- Configure proper HPA
Batch Processing
- Use job parallelism
- Configure proper resource limits
- Implement backoff limits
Stateful Applications
- Use StatefulSets
- Configure proper storage
- Implement proper backup strategies
Common Scaling Challenges
-
Resource Constraints
- Solution: Proper resource planning
- Implementation: Resource quotas and limits
-
Network Bottlenecks
- Solution: Service mesh implementation
- Implementation: Traffic management
-
Storage Scaling
- Solution: Dynamic provisioning
- Implementation: Storage classes
Monitoring and Alerting
1. Metrics to Monitor
- CPU utilization
- Memory usage
- Network throughput
- Storage IOPS
- Pod scaling events
2. Alert Configuration
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: scaling-alerts
spec:
groups:
- name: scaling
rules:
- alert: HighCPUUsage
expr: container_cpu_usage_seconds_total > 90
for: 5m
labels:
severity: warning
Conclusion
Implementing these scalability best practices ensures your Kubernetes clusters can handle growing workloads efficiently. Regular monitoring and optimization are essential for maintaining scalability.